
Virtual commissioning of production process
Final report
Master thesis MPSYS - SSYX04-17

Sara Winther

Department of Signals & Systems
Chalmers University of Technology
Göteborg, Sweden 2017

Virtual commissioning of production process
Sara S. Winther

© Sara S. Winther, 2017.

Examiner: Petter Falkman
Department of Signals and Systems
Chalmers University of Technology
SE-412 96 Göteborg, Sweden
Telephone +46 (0)31-772 1000

Göteborg, Sweden 2017

Abstract

In modern industry, production needs to be adaptable to be able to compete. Small
changes to a production cell can take time to implement, resulting in loss of profit. Issues
include implementation of new PLC, which lacks accurate verification methods. Virtual
commissioning is the verification of PLC using a production cell model. This enables faster
ramp up times, and improves overall quality. The issues with virtual commissioning is the
lack of integration. Reliable virtual commissioning methods use virtual models, which
requires modeling skills, a software modeling environment, and detailed production cell
information. It also requires an interface for the PLC to the virtual model, where reli-
able options are limited. There exists no formal method for virtual commissioning, which
makes implementation for first time users awkward and troublesome.
This thesis explores the requirements for a virtual model in a virtual commissioning
project, with a focus on the smart-components aside from the 3D modeling, where there
is already plenty of information for other purposes. A case study virtual model and PLC
are used to collect information and to verify the requirements for a virtual model, along
with reviews of reports from other virtual commissioning related projects. This thesis also
proposes further potential for a virtual commissioning project and how it can be realizable,
for instance by placing further demands on suppliers regarding robot/component models.
Demands could include simplified models, which takes little effort to generate and offer
more versatile use.

Keywords: Virtual commissioning, Process Simulate, Tecnomatrix, SIMBA,
TIA Portal, PLC verification, SimulationUnit

Contents

1 Introduction 1
1.1 Background . 1
1.2 Virtual Commissioning . 2
1.3 Report structure . 2

2 Problem 3
2.1 Objectives and purpose . 3
2.2 Constraints . 3

2.2.1 Process Simulate . 3
2.2.2 SIMBA . 4

2.3 Research questions . 4

3 Approach 5
3.1 Literature review: methods . 5
3.2 Literature review: potential . 6
3.3 Case study: editing existing robot cell . 6

4 Virtual model 7
4.1 Modeling . 7

4.1.1 Simplified model . 7

5 Station setup 8
5.1 Connection to SIMBA . 8
5.2 TIA portal . 8
5.3 Process Simulate . 8

5.3.1 Signal mapping . 9
5.4 Potential issues . 9

6 Case study: robot cell 10
6.1 Resources . 10

6.1.1 Resource names . 12
6.2 Operations . 12
6.3 Sensors . 12

7 Automatic signal mapping 13
7.1 Requirements . 13
7.2 Proposed structure . 13

Contents

8 Verifying setup and mapping 15
8.1 Trial run on PLC . 15
8.2 External safety I/O . 15
8.3 HMI . 15
8.4 Conclusion tests . 15

9 Results 17
9.1 Model specifications for virtual commissioning 17
9.2 Suggestions for faster simulations . 17
9.3 Energy consumption . 18
9.4 Summary answers to research questions . 18

9.4.1 Practical . 18
9.4.2 Exploration . 18

10 Discussion and conclusion 20
10.1 Sustainability and ethical aspects . 20
10.2 Further work . 21

References 23

A Step-by-step guide I
A.1 SIMBA box . I
A.2 Simulation unit . I
A.3 TIA Portal . II
A.4 Process Simulate . IV

B Mapping Macro V

1
Introduction

At production companies, the procedure when new production equipment is required is a
lengthy process where, in simplified steps, first hardware is specified, programmable logic
controller (PLC) code is written, and then everything is assembled and tested. The test-
ing period may end up being very long, as this is where issues with the communication
interfaces in the PLC/hardware combinations are discovered. To shorten this process,
virtual commissioning can be used, in which when the PLC is written, it can be immedi-
ately tested on emulated hardware. This allows issues to be discovered before assembly,
and enables methods to faster and easier identify trouble components. Ultimately this
results in a shorter testing period [1] and a more reliable final product. The issues with
implementing virtual commissioning today lies with the lack of integration [2]. Virtual
commissioning requires a virtual model which, if not designed with virtual commissioning
in mind, may end up requiring considerable redesign [3, 4]. By using methods where the
virtual model is designed for virtual commissioning, accurate simulations can be made, and
the reliability of the final product increases significantly [2, 5]. Primarily virtual commis-
sioning enables tests with realistic time delays and intercommunication between hardware,
whereas a software only model requires data to be gathered from relevant components to
model time delays, and assumes that hardware components and communication will sim-
ply work. Virtual commissioning may also be useful for optimization aspects. With a
sufficiently thorough physics engine in the virtual environment, energy efficiency can be
measured [6, 7], and plant layout can be more accurately represented and optimized.

1.1 Background

Virtual commissioning has existed since the early 90’s [8], and has been a growing concept
since. Many industries are starting to integrate it more into their production processes,
as its benefits result in less development downtime, shorter ramp-up time and therefore
more production time. When new production equipment is required, the process starts
with mechanical and electrical specifications. Once there is an idea of what the new
components will be, the PLC program is written, and the components are bought or
constructed, followed by assembly. Once everything is assembled, the PLC can be verified
[9]. This is where issues with the PLC program are discovered, and often these issues
relate to the mechanical and electrical components. Additionally, issues with a new PLC
program may also be discovered upon installation into an existing production line, resulting
in production downtime during troubleshooting. With virtual commissioning, significant
time loss can be avoided. Virtual commissioning enables tests on emulated hardware,
meaning that once the hardware has been specified, the PLC program can be almost
immediately written and tested. The benefits are considerable, and with more thorough
and detailed models, virtual commissioning could be used to run more tests on a production
cell, without taking down or otherwise affecting production.

1

1. Introduction

1.2 Virtual Commissioning

The steps required to perform virtual commissioning include the modeling of the virtual
plant. To model a plant or a production line, data needs to be gathered depending on
the required detail of the model. Measurements are needed for the 3D modeling of the
components, which may be simplified according to the needs and the tests [9]. In a
physics based model, details on moving surfaces may be necessary to model for accurate
collision detection. The exact position of sensors needs to be known to recognize when and
where detection happens. Additional data such as material and/or weights may also be
required to calculate loads, for modeling and optimization with regard for energy efficiency.
Sequence of operations and cycle times needs to be gathered as well, if only to provide
model validation data. This should yield a complete virtual model.
When the PLC is written, an I/O signals list can be defined and imported to the virtual
model. Finally, using a hardware emulation platform, the PLC can be tested and validated
by running simulations in the virtual model.

1.3 Report structure

The report is divided into the following chapters.

Chapter 2 defines the problem and the objective. The problem is defined as a set of
research questions, and a list of constraints is provided for potential approaches to the
answers.
Chapter 3 presents the approach to the problem, in the form of a literature review and a
case study, which is described more in the subsequent chapter.
Chapter 4 describes the requirements for the modeling process, to provide basis for what
rework may need to be done to the case study virtual model.
Chapter 5 describes how to setup all parts provided by the constraints for this virtual
commissioning project, and covers some potential errors in the setup.
Chapter 6 showcases a case study virtual model, and describes some immediate issues with
the model in its initial state.
Chapter 7 briefly describes the signal mapping macro which was written for the case study.
Chapter 8 covers the verification of the setup and the mapping written about in chapters
5 and 7.
Chapter 9 summarizes the required rework for the case study virtual model, and proposes
future steps to expand upon virtual commissioning. This chapter also answers the research
questions.
Chapter 10 contains the final discussion and conclusion, as well as a sustainability and
ethical discussion, as required by the department of education.

2

2
Problem

For many production companies, virtual commissioning has yet to be implemented. Issues
lie with complexity and lacking familiarity, and by developing a method to perform virtual
commissioning it may be implemented on a wider scale.

2.1 Objectives and purpose

The objectives are as follows:

• To create a specification for a virtual model for a virtual commissioning project.

• To create and confirm a straight-forward on-desk approach to PLC validation given
a virtual model, a PLC, and a hardware interface.

• To verify HMI before installation.

• To provide examples for further potential.

By being able to provide the appropriate specifications for a virtual model, a supplier could
provide a virtual commissioning model ready to be plugged in and tested upon delivery.
With an on-desk approach to PLC validation, companies should be able to make their
own minor modifications to an existing virtual commissioning project. By being able to
verify a HMI before installing it in the production cell, excessive troubleshooting times
can be avoided. Additional objectives includes to gain insight into if and how virtual
commissioning can be used for a more sustainable development of production lines and for
further optimization of existing production lines.

2.2 Constraints

Virtual commissioning requires a software platform for its virtual environment, and a
hardware or software platform for its emulated hardware. A hardware platform is used
for this report, as software solutions have proven unreliable during some short, initial
tests. The hardware platform is called SIMBA, and the virtual model will be simulated
in Process Simulate, for which a case study model has been provided. Some segments of
this report will therefore be case specific for Process Simulate.

2.2.1 Process Simulate

Process Simulate is a production line simulation environment by Siemens. A 3D plant
can be modeled and simulate regular behavior, as it enables sequencing of operations,
and it incorporates kinematic 3D simulation, which enables collision detection. Process
Simulate may be a sufficient platform to estimate energy consumption and maintenance
requirements.

3

2. Problem

2.2.2 SIMBA

SIMBA box is a hardware interface which can emulate multiple hardware platforms, which
enables an accurate testing ground for PLC. Its software supports fault injection and white
noise generation on analogue inputs, which enables a close to reality simulation. Given its
size and relative simplicity, this is a more flexible solution than common hardware-in-the-
loop (HIL) solutions, where usually entire shelves are packed with PLC related hardware
which require extensive reconfiguration for different tests or upgrades.

2.3 Research questions

For this report, six primary questions have been of interest, which can be divided into
two parts; practical and exploration. The practical part seeks to answer how to perform
virtual commissioning with the constraints given in section 2.2. With no prior knowledge
or experience with virtual commissioning, the research questions becomes the following:

1. What methods for virtual commissioning exist and how do they compare?

2. How can verification of a model be performed?

3. Are there potential errors and how can these be avoided?

The exploration part seeks to answer if there is further potential for a standard virtual
commissioning project, and if this potential is implementable.

1. What types of tests should a virtual commissioning model be able to perform?

2. Can a virtual commissioning model be accurate enough to obtain plant data directly
from the model?

- Can this be performed within reasonable time limits?

3. Can virtual commissioning be expanded to perform various tests, such as mainte-
nance or optimization?

By answering the above questions, this report should provide a sufficient guide to imple-
ment more virtual commissioning, and provide reasons why virtual commissioning should
be integrated further.

4

3
Approach

The final objective is to propose a guideline for virtual commissioning, given the aforemen-
tioned components, as well as provide arguments for why virtual commissioning should be
employed to a greater extent. To reach this objective, Process Simulate and SIMBA have
been studied and tested on a finished virtual model and its corresponding PLC. Further
there has been a literature review to find existing methods and to provide an idea of the
capabilities and limitations of virtual commissioning.

3.1 Literature review: methods

On the development of a virtual commissioning project there are articles such as [5], which
proposes a concurrent design method for a virtual commissioning project. It opens with a
description of conventional design procedures of a production system, wherein the design
process is divided into three primary stages, starting with process planning, then mechan-
ical design, then electrical design. The PLC can not be tested until the final stage, given
the requirement for actual hardware to run on. The article follows with a suggestion for
change in the procedure with the introduction of virtual commissioning. With virtual
commissioning, the mechanical and electrical design stages can run in parallel, and the
PLC can be tested as soon as there exists a consensus on the kinematics and the behavior
of the device.
Reports such as [9–11] cover the development of a virtual commissioning project in closer
detail, wherein all reports list the same data requirements and propose a similar work-
ing order. The reports suggest first identifying the system, such as purpose, sequence
of operations, the mapping of the connections between signals and PLC, resources and
geometries, layout, kinematics, and material flow. The next proposed step is to design
the virtual model, and to simplify resources and components where possible, followed by
signal generation and defining the cell behavior. After these steps, the virtual model is
ready to be tested, and then used to verify the PLC.
For faster and smoother simulations, the virtual model should be simplified, and features
of interest as suggested by Hoffman et al. [12] includes the removal of irrelevant features,
avoiding complex textures, and filtering out hidden or invisible parts. Further, Strahilov
and Damrath [13] adds that static objects can be merged into single units.
Additional reports of interest include ones on simplified modeling strategies. With the
use of discrete event systems (DEVS), a simplified virtual model can be generated. Reg-
ular atomic DEVS models are defined as a 7-tuple, however Ko and Park [4] propose a
4-tuple consisting of an input event set, an output event set, a task set, and a function
set which describes succeeding tasks from any given task. A visual representation can
be constructed in any given graphical environment, enabling the user to follow the event
flow, but excluding physics such as motion constraints and collision detection. For PLC
verification purposes, this type of model can be sufficient. For smaller companies that lack
the competence required to construct 3D models, this may provide a means to validate
PLC without investing in expensive licenses for software, and without spending significant
time on training staff.
A model needs to be tested, and reports such as [14] suggests automatic test generation for

5

3. Approach

model validation using Petri nets. A specification model is generated as a state machine,
which is mapped to an extended Petri net, from which test cases are generated. With a
reliable way to automatically generate test cases, the verification of a virtual commission-
ing model can be sped up, as manually generating states and observing a virtual run can
be time consuming.

3.2 Literature review: potential

In an article on energy efficiency and virtual commissioning [6], it is proposed that with
a sufficiently realistic virtual model, energy consumption can be estimated. Subsequently,
adding more details to the model may enable more information to be collected from sim-
ulations, though this might extend modeling time. Strahilov and Damrath [13] proposes
a pneumatic drive model with a simplified visual component for simulation speeds, with
more inclusive physics to cover some otherwise neglected forces. This yields a more accu-
rate representation of a pneumatic component’s actual energy consumption, which could
be applied to a virtual commissioning model. The concept of including energy consump-
tion modeling in system design is expanded upon in [15].
Meike [16] has through experimental models shown that energy losses in robots are mainly
caused by acceleration and deceleration, and with a general velocity reduction, energy con-
sumption is reduced. Virtual commissioning provides an environment where the motions
of each robot can be optimized to minimize acceleration/deceleration, without necessarily
missing deadlines.
A simplified simulation model can be applied to test maintenance strategies, such as in-
cluding priority in repair orders, redistributing operator responsibilities, or distributing
the workload. Gopalakrishnan et al. [17] does this by simulating production flow and
comparing unit output. Using a similar model, Karlsson et al. [18] evaluates different key
performance indicators (KPI) for a cell, and uses it to quantify how preventive mainte-
nance affects the need for corrective maintenance.
For more detailed models, there are many reports on the use of virtual reality to simulate
a production cell ([19–21] to cite a few), which may be useful for both production and
maintenance staff, as it enables the user to enter and observe a 3D production cell without
being present in the factory.

3.3 Case study: editing existing robot cell

A case study in the form of an existing robot cell has been provided by Volvo Cars Cor-
poration, in which a virtual model has been commissioned with only one specification, to
be able to run cyclic event evaluator (CEE) simulations in Process Simulate. The model
has not been verified, and some conventions have been vague, leaving enough room for in-
terpretation and thus some unexpected variations. The virtual model has a corresponding
PLC which has already been in use and is already verified to be in working order. This
offers a means to verify the model and signal mapping. The model is described more in
section 6.

6

4
Virtual model

This chapter covers the requirements to construct the virtual model for a virtual com-
missioning project, and provides insight into what to look for in the case study model
described in chapter 6.

4.1 Modeling

The virtual model needs to mimic specific behaviors of the real plant, depending on pur-
pose. For PLC verification purposes, an automaton representation of the plant can be
sufficient to confirm simple behaviors. For more complex tests such as time and path
optimization, the model may need to be more complex. In a more detailed model, physics
engines are commonly used to detect collision and friction. To create a realistic model
in a physics based 3D environment, detailed information about the resources is required,
specifically geometries and kinematics, along with range of motion. The layout of the
cell, which, and how many resources, and relevant components needs to be known. The
purpose of each component is required as well, in addition to a normal sequence of opera-
tions, dependencies, and material flow. A list of expected signals for each resource is also
required. With this information, a model can be constructed. In a modeling environment
such as Process Simulate, if the kinematics are properly defined, signals can be automati-
cally generated to communicate with a PLC.

4.1.1 Simplified model

For larger production cells, significant processing power can be required to simulate mul-
tiple resources and their kinematics. To speed up simulation times and to make the flow
more smooth, the model should be simplified. Many suppliers provide a virtual model of
their products. The virtual model is usually very detailed, including some hidden com-
ponents which are never exposed unless the product is opened up. Components may also
include labels with product information or company names, such as the labels seen in
figure 4.1.

Figure 4.1: A buffer with three labels highlighted. They appear as green in the model.
In a cell containing many components with unnecessary details, simulation times are neg-
atively affected.

Any surface which is not at risk for collision, or is static, can be reduced. Static compo-
nents can be merged into single units, and detailed surfaces can be stripped of complex
geometries and textures.

7

5
Station setup

This section covers the setup of a virtual commissioning project in Process Simulate, using
SIMBA box and TIA Portal as the PLC interface. A more detailed guide is provided in
appendix A.

5.1 Connection to SIMBA

The connection to the SIMBA box is done via the SIMULATIONUnit program. If the
project has not already been created, a new project can be created by selecting a project
folder destination and importing hardware via the configuration menu. The SIMBA-
box can be added by scanning the network. Once the SIMBA has been connected, the
hardware needs to be configured by adding symbol- and .OMS or .dat files. The symbol
file is generated by exporting the PLC tags in TIA Portal. The .dat and/or .OMS files
are automatically generated by TIA Portal when the project is compiled.
Once the SIMBA is online, the next step is to close the SIMULATIONUnit program
entirely. If the program is not closed, it may cause conflicts when the TIA Portal tries to
access the PLC via the SIMBA box. What exactly happens during this conflict has not
been explored, however during some quick checks to confirm that conflict actually occurs,
the TIA Portal has slowed down dramatically, calling different errors regarding hardware
connections, and overall making an otherwise smooth process tedious. To restore a smooth
flow without errors, resetting the SIMBA and restarting TIA Portal has been necessary.

5.2 TIA portal

The PLC program can be observed live via TIA Portal, by opening the project and going
online to the connected PLC. This can only be done when the SIMBA has been connected,
or the portal will not find the PLC. SIMULATIONUnit needs to be closed after establishing
the connection to avoid conflict. If the PLC is empty or contains an old PLC program, it
will need to be loaded.
From the portal, by navigating to a desired PLC sequence, the process can be monitored
via the ”Monitoring on/off” option. This enables the user to follow the program step-
by-step during execution. This may also be useful for troubleshooting. There is also a
cross-reference function, which shows where a PLC tag is used, which enables an easy
way to backtrack a signal to find its origin and what might affect its state. The PLC
can be set to start/stop via TIA Portal, but there have been some instances where the
PLC crashes when this is done. Why has not been identified, however it is easily fixed by
simply resetting the device and re-establishing the SIMBA connection.

5.3 Process Simulate

To run and observe a simulation with the PLC, Process Simulate needs to be set to
simulate via PLC. In the signal viewer, a complete signals list of currently existing signals

8

5. Station setup

can be seen. Their states can be monitored by selecting the signal and adding them to
the simulation monitoring window.

5.3.1 Signal mapping

Process Simulate and TIA Portal provide no tools to simplify signal mapping beyond the
possibility to export and import formatted excel files in which the mapping has already
been performed. Given a project with hundreds of signals, this quickly becomes cumber-
some manual labor. By using naming conventions, this process can be automated. One
suggestion is to export a complete component list from Process Simulate, and using PLC
naming conventions, convert all signal names to their corresponding PLC tags. Then the
new signal list from Process Simulate can be matched with a PLC tags list from TIA
portal, including addresses. The matched signal list can then be formatted so that it
can be read by Process Simulate’s connection mapping tool, which sets the addresses and
resource connections of signals included in the excel file. A macro which performs these
steps is described in section 7.

5.4 Potential issues

The PLC may be expecting signals from external PLCs. This causes no conflict, however
signals representing the external PLCs can not be mapped. There are several approaches
to how to manage these signals, such as manually finding all blocks containing calls to
an external PLC and manually setting these signals to their expected true/false states, or
deleting all calls to external PLCs entirely. In some places, the PLC is expecting a signal
from an external resource, a resource not included in the specified cell. These can be
treated in a similar fashion, where either the call is deleted or the signal is manually mod-
ified. While deletion is faster, manual modification may be necessary in some instances
where for example the call references a product number.

9

6
Case study: robot cell

An existing model has been provided for the purpose of identifying what rework needs to be
done for the model to be ready for a virtual commissioning project. The only specification
which was provided for the model builders was that the model should be able to run CEE
simulations in Process Simulate. By looking closer at the contents of the virtual model
and some of the expected behavior according to the PLC, it should be possible to provide
a more complete specification for future projects.

6.1 Resources

The model consists of seven robots, seven fixtures, a number of buffers, and two turntables,
seen in figures 6.1, 6.2, and 6.3.

Figure 6.1: The seven robots in the provided robot cell.

Some of the robots contain defined poses and signals. The pose names contain clues
about their purpose, such as the name of a material type which is handled by the cell,
however which part specifically is undefined, as well as the robot’s expected behavior at
each position. The signals consists for most part of the signals which are automatically
generated via Process Simulate functions, however some have been manually created, but
do not appear to be linked to expected PLC signals in any way.

10

6. Case study: robot cell

Figure 6.2: Sample fixture from the provided robot cell.

The fixtures contain a number of clamps, pins, and swings. Some components do not
contain defined poses, and many components contain multiple units, such as the swings
which always have a subordinated pin and/or clamp. The clamps, swings, and pins should
have binary open/close operations, and the swings should have additional signals for special
settings and error detection. For all components, the logic blocks need to be defined.

Figure 6.3: One of the two turntables from the provided robot cell.

The two turntables appear visually identical, however they have been defined very dif-
ferently. They consist of a rotary table, twelve clamps, and three slides. In the PLC
tags list, it appears that the turntables are expected to have a signal for a 13th clamp,
however no such clamp exists in the model. Instead ghost logic will be used in its place.
In Process Simulate, logic blocks are created for each component, and for the logic to
apply to visual components, subordinated units have their logic in the same component.

11

6. Case study: robot cell

For one of the turntables, the clamps have been subordinated to the slides, putting four
clamps in each slide, resulting in the slide containing logic for itself and the clamps. For
the other turntable, the clamps are subordinated to the rotary table. With twelve clamps
and 19 expected signals for the rotary table, this results in a very long signal list for a
single component. The logic is created manually, and with a big cluster of entries and exit
signals in a single component, there is significant room for error during logic creation.

6.1.1 Resource names

The case study follows a naming convention which uses document numbers and a title.
The title convention is simply ”description of the model, separated with underscores ()”.
This has been interpreted differently and resulted in a model with components having very
different names yielding very little or sometimes incorrect information, such as descriptions
stating that the component is a clamp, when it is a pin. With no reliable indicator in the
name regarding the true contents of components in the component list, all components
are renamed to follow a different naming convention. In the new naming convention,
information about station number, unit type, and group number can be obtained from the
component name. From this information, the signal/s and PLC tag/s for the unit/s can
be generated. If all components have properly defined kinematics in the model, all signals
can be automatically generated and matched externally, using the Connection Mapping
tool. A macro has been created for this purpose, and is described more in section 7.

6.2 Operations

The model contains some predefined operations, however they appear to be missing some
information in order to run. The operations are run on continuous time, and have fixed
orders for corresponding tasks. The resources do not need to send or receive signals to
operate, and any implemented signals can not be controlled externally without manually
forcing new states. Operations can be used to verify offline model behavior, but serve no
purpose for the verification of the PLC.

6.3 Sensors

There are no part sensors defined in the model, which needs to be created. By using
descriptions given in the PLC tags list, the sensors can be matched to their corresponding
parts. Many components have a visual object representing the sensor, however the object
has been defined in such a way that the entire component needs to be used to act as the
visual representation of the sensor. This will affect when detection happens, as detection
will happen when the part is within a certain distance from the component, as opposed
to when it is a certain distance from the sensor itself.

12

7
Automatic signal mapping

For a production cell with many components and robots, the number of required signals
becomes very long. In the provided case study, the PLC tag list contains over 2000 signals.
To connect the relevant signals to the Process Simulate model, a macro has been written
to construct signals assuming standardized names and properties. The macro creates a
signal list which follows a format expected by the Connection Mapping function in Process
Simulate, allowing import of a signals list which connects each signal to a resource and
logic block.

7.1 Requirements

The macro needs a component list with standardized component names. The virtual model
needs components to use standardized kinematics and logic names, or the connection
mapping function will not be able to map the signal.

7.2 Proposed structure

The PLC tags in the case study follows a naming convention, which for components is
given by a station number, group number, and then some specific numbers/letters, de-
pending on unit type. For other resources, such as robots or shared zones, the convention
is slightly different, but with sufficient insight into the expected signals from each resource,
a set of standardized signals can be reconstructed. The flow of the macro is simple, and
is presented in pseudo code below. For each component in the component list, the macro
extracts station number (used for the PLC tag prefix), component type (determines which
signals are created), and component group (used for the PLC tag group). With this in-
formation, signals can be created and a PLC tag can be reconstructed. The reconstructed
PLC tag is then used to find the signal address in the PLC tag list.

for each component in list do
% Extract component information using naming convention
% Here, the convention contains station number, component type, and PLC tag

group, separated by a delimiter
Split component by delimiter into array
plcPrefix = component(0)
unitType = component(1)
unitGroup = component(2)
if unitType = TYPE then

Create signals for TYPE
Set plctag = plcPrefix & unitGroup & TYPESPECIFIC

else if unitType = OTHER TYPE then
Create signals for OTHER TYPE
Set plctag = plcPrefix & unitGroup & TYPESPECIFIC

else if unitType = ... then
...

13

7. Automatic signal mapping

end if
Set plcAddress = find(plctag in PLC tag list)
Print component, signals, plcAddress to excel document

end for

In the actual macro, there is plenty of room for rework. Speed or memory management
has not been regarded, as the macro has been constructed primarily to enable testing.
The final macro can be seen in appendix B.

14

8
Verifying setup and mapping

Once the provided model for the case study has been modified and the signals have been
mapped, the PLC is connected to perform a test run. The PLC is unfamiliar, but with some
manual exploration and standardized, descriptive names of function blocks and signals, a
trial run can be performed.

8.1 Trial run on PLC

Many signals from the PLC tags list have an easily identified function and are mapped
without any issues. To identify the remaining signals, the sequence blocks in the PLC
have been observed, and TIA Portal’s cross-referencing functions have been used to find
the location of the signal. Signals contain descriptive comments regarding its purpose,
however often the comments provide no information about which resource it comes from,
or when/why. By finding where the signal is used, it has been possible to further identify
the purpose of the signal. A list has been compiled with the missing signals, which are
mapped for subsequent tests.

8.2 External safety I/O

For subsequent tests, ghost logic has been created for unidentified signals, and a set of
signals marked ”Safety I/O” have been mapped. The safety I/O signals relate to raising
errors, such as when safety zones are violated, or when the emergency stop is activated.
Many signals relate to feedback on the status of the safety systems, and these need to be
true in order for other systems to be able to run at all. Some of the feedback signals are
connect to external PLCs and can not have their states changed internally. There are two
approaches to managing these signals, either set all these signals manually with constant
true/false variables, or deleting calls to external PLCs entirely. Removing blocks entirely
is significantly faster, however for verification purposes it may be preferable to set signals
manually.

8.3 HMI

The PLC has a set of HMI screens, which have been tested on a HMI connected to the
computer. When signals have their states changed in Process Simulate, the HMI updates
accordingly. The setup is straight forward, requiring no further action beyond mapping
the signals and uploading the specific PLC to the HMI.

8.4 Conclusion tests

The entire range of the PLC has not been tested, as it contains more function blocks than
can be tested in the allocated time. Without knowing the expected logic and relations
for each signal, many signals need to be updated manually in Process Simulate. However,

15

8. Verifying setup and mapping

the PLC and Process Simulate are able to communicate, and with a more complete model
and insight into the PLC, the process should run smoothly. Both PLC and HMI can be
successfully validated using Process Simulate and a SIMBA box interface.

16

9
Results

The final results are gathered in this section, which ends with a summary of the answers
to the research questions.

9.1 Model specifications for virtual commissioning

A virtual model has a set of standard specifications for the visual aspects, including geome-
tries, kinematics, dependencies, and layout. Ghost logic can be implemented for invisible
resources, for example a resource outside the production cell which shares another resource
inside the production cell. Independent resources should be modeled to enable independent
logic. Logic can be implemented to dependent resources to mimic independent control,
however for units with many states or many dependencies, more lines of additional logic
is required. Unless the logic generation is automated, the implementation becomes prone
to human error.
A PLC uses a different set of signals for different types of resources, so for every resource,
there needs to be a complete list of expected signals. This includes safety signals, such as
safety zone violation and alarm generation. To automate the signal mapping process, the
logic block ports should use standardized names.
In Process Simulate, sensors do not use logic blocks. Sensors are defined as their own
resources, and automatically generate a connected signal upon creation. For automatic
mapping to the PLC, a different function needs to be used than the one used for resource
mapping. This requires that the sensor signal already exists, thus sensors should use stan-
dardized names for seamless mapping.
The model needs to be ready for use before the construction or rework of the real cell
begins, otherwise the purpose of virtual commissioning is defeated. This puts a time
constraint on the creation of a virtual model for a virtual commissioning project.

9.2 Suggestions for faster simulations

Simplified models enable faster simulations, which enables a wider range of test cases. For
production cells with multiple resources, every detail which can be removed or reduced
speeds up simulation times.
One proposed solution is to request that the component designer constructs two models
for the same product, one detailed and one simplified. The simplified model should be
stripped of excessive details and use simplified geometry. This puts more effort on the
supplier.
Another proposed solution is based on the assumption that suppliers use naming conven-
tions for their CAD models and that these names can then be accessed in the model. By
identifying how component parts are named, the model can be edited with a script to hide
or remove parts with names such as ”identity plate”, ”label”, and keep parts with names
such as ”base frame”, or ”detection unit”. This puts more effort on the client.

17

9. Results

9.3 Energy consumption

Many organizations put an ever increasing demand for sustainable solutions. Energy
consumption models are currently being developed and may at the time of this report
not exist for all types of components in a production cell. By requesting that suppliers
include energy consumption modeling in their CAD models, the research and development
of accurate energy consumption models may be sped up. Virtual commissioning can then
be performed with regard for energy efficiency.

9.4 Summary answers to research questions

To answer the questions posed in chapter 2, interviews have been conducted with staff at
Volvo Cars Corporation, who are currently looking into integrating virtual commissioning
into their work process. With additional support from a case study and literature, the
answers have been summarized in this section.

9.4.1 Practical

1. What methods for virtual commissioning exist and how do they compare?
There exists no formal method for virtual commissioning, however most projects follow
the same work order, by starting with gathering information about the robot cell and
constructing the virtual model with this information, described more in chapter 4. The
PLC can be written in parallel with the modeling process, and then the model and the
PLC signals can be mapped. Knowledge of the production cell’s sequence of operations,
and expected signals in the PLC are especially required during the verification process.

2. How can verification of a model be performed? A model can be verified offline
if the simulation environment supports offline tests, by creating operations and comparing
the model’s behavior with the real production cell. In particular, the kinematics of each
component should be observed, to see if it is able to move to expected poses, and to see if
connected signals respond accordingly. Ghost logic can be implemented if a component is
not behaving as expected (or is missing), however this removes the possibility to observe
the behavior during simulation. Further verification can be performed when connecting to
the PLC, as the model should behave the same way online as offline, thus enabling PLC
verification.

3. Are there potential errors and how can these be avoided? Potential errors
depend on simulation environment and human factor. Programs such as Process Simulate
offers many functions which automatically generate standard resource logic, signals, oper-
ations, etc., which reduces the risk for errors. However, there are no automatic functions
for generating non-standard resource logic and signals, or to enable seamless signal map-
ping, and this is where human factor causes the errors. It is necessary to put conventions
in place and to follow these to reduce the risk for error, and to enable external automation
of processes such as signal mapping.

9.4.2 Exploration

1. What types of tests should a virtual commissioning model be able to per-
form? Interviews have been conducted with PLC staff at Volvo Cars Corporation, who

18

9. Results

have expressed a desire to use virtual commissioning projects as training material, for in-
stance to observe what happens when certain alarms are triggered. There is also a desire
to be able to obtain collision zones and cycle times from the model. This should be possi-
ble to obtain from a virtual commissioning project as it is, assuming it has been properly
designed, and that the simulation environment supports collision detection. Further, there
is an interest in being able to enter a 3D virtual model (virtual reality) to look more closely
at detailed components. With a sufficiently detailed virtual model, and an interface to
enable virtual reality, this is possible.

2. Can a virtual commissioning model be accurate enough to obtain plant
data directly from the model? Can this be performed within reasonable time
limits? The accuracy of data which can be obtained from a virtual model depends on the
model and the desired data. To obtain cycle times and collision zones, the model can be
nearly accurate enough without requiring any additional rework efforts, in particular dur-
ing tests with the PLC, from which time data can be obtained to provide rough estimates.
Further, for energy consumption, the model may need to be appended. CAD models of
resources are often provided by suppliers, and by demanding that suppliers include energy
consumption modeling, energy efficiency can be measured.

3. Can virtual commissioning be expanded to perform various tests, such as
maintenance or optimization? A model connected to a PLC can be used to check
collision zones and to verify safety signals and alarm generation. The virtual environment
can also be used to minimize robot movement to reduce energy consumption, and can
be included to test different maintenance strategies. Further it can be used to observe
cell behavior when single units are down. During PLC verification, test cases are given
different priorities, depending on how they affect real life production and safety. If the
virtual commissioning project includes a simplified model, it may be used to test cases
with lower priority, which may otherwise be skipped to save time.

19

10
Discussion and conclusion

The provided case study has been central, and a lot of time has been put into untangling a
mess of information, due to the case study being developed by different teams at different
times with vague specifications. Given the nature of the provided case study, the report
does not contain any PLC development efforts, however the development of a PLC is
relatively effortless with the use of DEVS software. The objectives can be summarized
into exploring if on-desk PLC verification is possible, and providing a concrete example
of how to perform it. This report provides a suggested item list to look for in a virtual
model, which may me overlooked when only constructing a 3D model. This report also
provides means to speed up the signal mapping process by automating signal generation
and mapping, with the use of standardized names. The provided tools, Process Simulate
and SIMBA box, require little previous knowledge to use with existing projects, and a
simple step-by-step guide can be sufficient for model verification by inexperienced users.
Regarding the exploration aspects of the report, no research has been conducted, instead
a mixture of reviewing other reports and hands-on experience from working with the case
study has been the basis for provided answers, supported by interviews with experienced
PLC staff at Volvo Cars Corporation.

10.1 Sustainability and ethical aspects

There are multiple pros and cons with virtual commissioning, a duality which causes the
points to merge and being difficult to divide. Some benefits include faster ramp up times
of production cells, which reduces the strain on workers and potentially increases profits
for the production company. The production company will either divide new tasks for
their workers, or terminate now excessive workforce. The increase in profit and reduction
of ramp up times could be used to explore more sustainable solutions for production pro-
cesses, or to expand production, thus creating more employment opportunities. Virtual
commissioning is another step in the automation of industry, ultimately resulting in a
workload redistribution. There will be more employment opportunities for engineers with
higher education, and fewer opportunities for workers in the factory. Virtual commis-
sioning in its current state requires an initial investment which smaller companies may
not be able to afford, providing an edge for already well-established companies to further
out-compete and dominate the market.

Virtual commissioning comes with several sustainability properties, described more in
section 3.2. If developed and integrated properly, commissioning time can be reduced
by 75% [22], which ultimately results in a cheaper production. The reliability of the
final product increases, meaning deadlines are more likely to be met, and reduced stress
for workers as a consequence. With the use of thorough physics in the virtual model,
mechanical energy consumption can be estimated, which allows design with environmental
impact in mind. With collision detection, friction and wear estimates can be made, which
may provide data for preemptive maintenance.

20

10. Discussion and conclusion

10.2 Further work

For further research, there are many possibilities. One in particular is the development
of reliable software interfaces to verify PLC. One overlooked issue in this thesis regarding
the chosen PLC verification platform is the required hardware and its costs. Purchasing
one SIMBA box and PLC pair may be affordable to most companies, but to equip a
team with all of the required hardware gets costly. Having a set of physical platforms
also creates potential issues regarding availability. As mentioned in section 2.2, existing
software solutions are lacking in reliability. Ideally, the PLC interface and the PLC itself
could be run on a reliable software interface, and accessed on a shared network to enable
access for an entire team.

21

Bibliography

[1] Lock-Jo Koo, Chang M. Park, Chang H. Lee, SangChul Park, and Gi-Nam Wang.
Simulation framework for the verification of plc programs in automobile industries.
International Journal of Production Research, 49(16):4925–4943, 2011.

[2] S. Seidel, U. Donath, and J. Haufe. Towards an integrated simulation and virtual
commissioning environment for controls of material handling systems. pages 1–12.
IEEE, 2012. ISBN 0891-7736.

[3] Henrik Carlsson. Reliable virtual commissioning, 2012.

[4] Minsuk Ko and Sang C. Park. Template-based modeling methodology of a virtual
plant for virtual commissioning. Concurrent Engineering, 22(3):197–205, 2014.

[5] Minsuk Ko, Euikoog Ahn, and Sang C. Park. A concurrent design methodology of a
production system for virtual commissioning. Concurrent Engineering, 21(2):129–140,
2013.

[6] Felix Damrath, Anton Strahilov, Thomas Bär, and Michael Vielhaber. Establish-
ing energy efficiency as criterion for virtual commissioning of automated assembly
systems. Procedia CIRP, 23:137–142, 2014.

[7] Daniel Wolff, Dennis Kulus, and Stefan Dreher. Simulating Energy Consump-
tion in Automotive Industries, volume 9783642287770, chapter 4, pages 59–
86. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012 edition, 2012. ISBN
9783642287763;364228776X;3642287778;9783642287770;.

[8] Patent issued for method and system for testing safety automation logic of a manu-
facturing cell. Journal of Engineering, page 7645, 2015.

[9] S. Makris, G. Michalos, and G. Chryssolouris. Virtual commissioning of an assembly
cell with cooperating robots. Advances in Decision Sciences, 2012:1–11, 2012.

[10] Jasmin Dzinic and Charlie Yao. Simulation-based verification of plc programs, 2014.

[11] Luis V. Guerrero, Virgilio V. López, and Julián E. Mej́ıa. Virtual commissioning
with process simulation (tecnomatix). Computer-Aided Design and Applications, 11
(sup1):S11–S19, 2014.

[12] Peter Hoffman, Reimar Schumann, Talal M. A. Maksoud, and Giuliano C. Premier.
Research on simplified modelling strategy for virtual commissioning. Proceedings of
the European Modeling and Simulation Symposium, pages 293–302, 2012.

[13] Anton Strahilov and Felix Damrath. Simulation of the behavior of pneumatic drives
for virtual commissioning of automated assembly systems. Robotics and Computer-
Integrated Manufacturing, 36:101–108, 2015.

22

Bibliography

[14] Sebastian Sub, Stephan Magnus, Mario Thron, Holger Zipper, Ulrich Odefey, Victor
Fassler, Anton Strahilov, Adam Klodowski, Thomas Bar, and Christian Diedrich. Test
methodology for virtual commissioning based on behaviour simulation of production
systems. pages 1–9. IEEE, 2016.

[15] Felix Damrath, Anton Strahilov, Thomas Bär, and Michael Vielhaber. Method for
energy-efficient assembly system design within physics-based virtual engineering in
the automotive industry. Procedia CIRP, 41:307–312, 2016.

[16] D. Meike. Increasing energy efficiency of robotized production systems in automobile
manufacturing. PhD Thesis. Rı̄ga: [RTU], 214:1–32, 2013.

[17] Maheshwaran Gopalakrishnan, Anders Skoogh, and Christoph Laroque. Simulation-
based planning of maintenance activities in the automotive industry. 2013.

[18] Nadine Karlsson, Camilla Lundgren, Maheshwaran Gopalakrishnan, and Anders
Skoogh. Quantifying the effects of production maintenance decisions using discrete
event simulation. 2014.

[19] LP Berg and JM Vance. Industry use of virtual reality in product design and manu-
facturing: a survey. VIRTUAL REALITY, 21(1):1–17, 2017;2016;.

[20] Hwa J. Yap, Zahari Taha, Siti ZawiahDawal, and Siow-Wee Chang. Virtual reality
based support system for layout planning and programming of an industrial robotic
work cell: e109692. PLoS One, 9(10), 2014.

[21] Christopher J. Turner, Windo Hutabarat, John Oyekan, and Ashutosh Tiwari. Dis-
crete event simulation and virtual reality use in industry: New opportunities and
future trends. IEEE Transactions on Human-Machine Systems, 46(6):882–894, 2016.

[22] Chi G. Lee and Sang C. Park. Survey on the virtual commissioning of manufacturing
systems. Journal of Computational Design and Engineering, 1(3):213–222, 2014.

23

A
Step-by-step guide

While Process Simulate and TIA Portal cover many needs and offer multiple functions,
reliability is slightly less guaranteed. Throughout testing and repeating all steps in the
exact same order every time, once in a while something will cease to work, something
might crash, an unexpected failure will occur, and with a simple restart, everything runs
smoothly again. For all of the above steps, if everything is done correctly, it should work.
If for some reason it does not work, repeating the steps again and/or restarting something
might make things work again. The best solution to unnecessarily losing work is to save
frequently and to remain patient.

A.1 SIMBA box

The SIMBA is connected to the PLC via port 1, and to the PC via port CTRL. The
SIMBA has a reset button which can be used to reset the SIMBA if there is a glitch.

A.2 Simulation unit

To create a new project, Project -> New and choose a folder destination.

Figure A.1: Create new project

To connect the SIMBA, go to Configuration -> Import hardware.
From the import hardware window, scan the network for SIMBAS. Verify that the connec-
tion has been established by using the blink button. Once the SIMBA has been selected,
add a symbol file, and an OMS file or system data block file. The symbol file can be
exported from TIA Portal, described more in section A.3. The OMS and/or system data
block files can be found in a folder called TIAExports when the PLC project has been
compiled.

I

A. Step-by-step guide

Figure A.2: Import hardware window

A.3 TIA Portal

Open the desired project. To compile the project, select Edit -> Compile. To load the
project to the PLC, select Online -> Download to device. In the Download to device
window, select ”Show accessible devices” in the Select target device drop down menu, and
Start search. Find your PLC, and verify the connection with the Flash LED button.

Figure A.3: Download to PLC

Once the project has been downloaded to the PLC, select Online -> Go Online. To
monitor a sequence or a block, select Monitoring on/off. When monitoring is enabled,

II

A. Step-by-step guide

manual or automatic mode can be selected. Automatic mode will execute the sequences
automatically, manual mode requires that the user manually selects the next block in a
sequence. To go to a specific block, manual mode is required. To go to a specific block,
right-click it and choose Activate step.

Figure A.4: Monitoring PLC execution in TIA Portal

If you are uncertain about the purpose of a signal, you can use cross-references to obtain
more information. In the cross-references window there is a column ”Access”, which shows
how the signal is used. The links can be used to open the block where the signal is used.

Figure A.5: Identifying signals with cross-references

Function blocks can be opened to reveal the input/output connections.
To use a HMI, download to the HMI by performing the same steps as above (Extended
download to device), however choose the HMI among the accessible devices instead.

III

A. Step-by-step guide

A.4 Process Simulate

To connect to the PLC via the SIMBA, go to Program Settings and select the path to the
SIMBA project. To connect to the PLC, go to Options, find the PLC tab, and select PLC
External Connection. Verify the connection by going to Connection Settings and selecting
Validate.
Signal mapping can be done externally in excel. The information must be entered accord-
ing to specifications to work with their corresponding functions.
To import signals mapped to resources, use Connection Mapping. This function creates
signals and connects them to resources containing logic blocks.

Figure A.6: Connection mapping

To map sensor signals, use Signal Mapping. Sensors do not use logic blocks and can not
be mapped via Connection Mapping.

Figure A.7: Signal mapping tool

IV

B
Mapping Macro

Private Sub CommandButton1_Click ()

’ variable definitions , if any variable is missing , add it here

’ COLUMN INFORMATION

Dim tagColumn As String

Dim pinNameColumn As String

Dim sigNameColumn As String

Dim sigTypeColumn As String

Dim addrColumn As String

Dim extConColumn As String

Dim resourceColumn As String

Dim srcColumn As String

’ OTHER VARIABLES

Dim iLastRow As Integer

Dim clampCtr As Integer

Dim pinCtr As Integer

Dim clampAppend As String

Dim pinAppend As String

Dim temp As String

Dim clampNbr As String

Dim nbrClamps As Integer

Dim k As Integer

Dim pinNbr As String

Dim nbrPins As Integer

’ UNIT AND COMPONENT INFORMATION

Dim cName As String

Dim component As String

Dim units() As String

Dim unitGroup As String

Dim unitType As String

Dim plcPrefix As String

’ SIGNAL ARRAYS

Dim signInfo As Variant

Dim swingStates As Variant

Dim swingSign As Variant

Dim swingTags As Variant

Dim swingPorts As Variant

Dim clampStates As Variant

Dim clampSign As Variant

Dim pinStates As Variant

Dim pinSign As Variant

Dim clampTags As Variant

Dim pinTags As Variant

Dim turntabStates As Variant

Dim turntabSign (23) As String

Dim turntabTags As Variant

Dim turntabPorts As Variant

’ WORKSHEET INFORMATION

Dim srcSheet As String

Dim compList As Worksheet

Dim targetList As Worksheet

Dim compPath As String

On Error GoTo ErrHandler

’ column allocation according to PS specification

V

B. Mapping Macro

resourceColumn = "A"

’ B is currently free space

pinNameColumn = "C"

sigNameColumn = "D"

sigTypeColumn = "E"

addrColumn = "F"

’ G is for comments. here it will be used to store the PLC tag

extConColumn = "H"

’ prompt the user to select the component list file

With Application.FileDialog(msoFileDialogOpen)

.Title = "Select the component list"

.AllowMultiSelect = False

’ set file types that are displayed in the browse window. can skip this and

instead use error management if

’ user selects an incompatible file

.Filters.Clear

.Filters.Add "", "*.xlsm"

.Filters.Add "", "*.csv"

.Filters.Add "", "*.xlsx"

.Show

’ if cancel , exit

If .SelectedItems.Count = 0 Then

Exit Sub

ElseIf .SelectedItems.Count = 1 Then

compPath = .SelectedItems (1)

End If

End With

srcSheet = "Standard"

srcColumn = Application.InputBox(prompt :="Enter the column in which the components

 are found (A by default). Cancel to select default.", Type :=1 + 2)

If srcColumn = vbNullString Then

srcColumn = "A" ’ component source column

End If

tagColumn = "G" ’ plc tag column destination

’ define target location

Set targetList = ActiveWorkbook.Worksheets (1)

’ create new instance of excel , and make it invisible

Set xlApp = New Excel.Application

xlApp.Visible = False

’ open your workbook in this new instance

On Error Resume Next

Set compList = xlApp.Workbooks.Open(compPath , ReadOnly :=True).Worksheets(srcSheet)

If Err.Number = 9 Then

Err.Raise 9, "ReadWorksheet", _

"The sheet name did not meet expectation. The component list should have a

 sheet named Standard."

compList.Parent.Close

xlApp.Quit

GoTo ErrHandler

End If

xtrRows = 1

iLastRow = compList.Range(srcColumn & Rows.Count).End(xlUp).Row ’ get the last row

in the component list

If iLastRow < 2 Then

Err.Raise vbObjectError + 514, "ReadWorksheet" _

, "There appears to be empty cells in column " & srcColumn & " in the

component list."

compList.Parent.Close

xlApp.Quit

GoTo ErrHandler

End If

VI

B. Mapping Macro

’ create header

targetList.Cells(1, resourceColumn).Value = "ResourceName"

targetList.Cells(1, "B").Value = "CategoryNameProvider"

targetList.Cells(1, pinNameColumn).Value = "PinName"

targetList.Cells(1, sigNameColumn).Value = "SignalWireName"

targetList.Cells(1, sigTypeColumn).Value = "SignalType"

targetList.Cells(1, addrColumn).Value = "Address"

targetList.Cells(1, "G").Value = "Comment"

targetList.Cells(1, extConColumn).Value = "External Connection"

’ start at k=2 to avoid the header. there are probably better looking ways to do

that , but k=2 is very short and concise

For k = 2 To iLastRow

cName = compList.Range(srcColumn & k).Value

If cName = "" Then

Err.Raise vbObjectError + 514, "ReadWorksheet" _

, "There appears to be empty cells in column " & srcColumn & " in the

component list. Issue with row number " & CStr(k)

compList.Parent.Close

xlApp.Quit

GoTo ErrHandler

End If

’’’’ EXTRACT UNIT INFORMATION FROM cNAME HERE

units = Split(cName , "-")

’ extract PLC and component information before adjusting unit array

plcPrefix = units(LBound(units))

plcPrefix = Right(plcPrefix , Len(plcPrefix) - 3)

For i = 1 To UBound(units)

units(i - 1) = units(i)

Next i

ReDim Preserve units(UBound(units) - 1)

’ INFO:

’ we’d rather adapt this macro to PS than the other way around , to enable as

many automatic functions in PS as possible.

’ this check is to see if there are multiple compontents in the same unit. for

singular components , default names are used.

’ for multi -components , names are appended with information such as c1, pin1 ,

c2, c3...

clampCtr = 0

pinCtr = 0

If InStr(plcPrefix , "F") <> 0 Then

component = "fixture"

ElseIf InStr(plcPrefix , "CTT") <> 0 Then

component = "turntable"

Else

Err.Raise vbObjectError + 513, "ReadWorksheet" _

, "Could not recognize any machine types. Types recognized by this

macro: F (fixture), CTT (turntable)." _

& " Issue with component in row " & CStr(k)

compList.Parent.Close

xlApp.Quit

GoTo ErrHandler

End If

plcPrefix = Left(plcPrefix , 3)

’ signal generation for fixture pins/clamps and turntable pins/clamps is

different (MIGHT NOT STILL BE THE CASE)

’ increment by 2 with each step

For N = LBound(units) To UBound(units) Step 2 ’ why are all n:s automatically

capitalized?

unitType = units(N)

VII

B. Mapping Macro

unitGroup = units(N + 1)

If component = "fixture" Then

’ if clamp , create at_OPEN/CLOSE , rmtp_OPEN/CLOSE

If InStr(unitType , "CLAMP") <> 0 Then

clampNbr = Right(unitType , 2)

If IsNumeric(nbrClamps) Then

nbrClamps = CInt(clampNbr)

Else

Err.Raise vbObjectError + 515, "ReadWorksheet", _

"Component name missing number , expected format TYPExx ,

such as CLAMP02. Issue with component in row " & CStr(

k)

compList.Parent.Close

xlApp.Quit

GoTo ErrHandler

End If

temp = unitGroup

For h = 1 To nbrClamps

unitGroup = Left(temp , 3)

temp = Right(temp , Len(temp) - 3)

xtrRows = xtrRows + 4

targetList.Range(resourceColumn & xtrRows - 3 & ":" &

resourceColumn & xtrRows).Value = cName

’ see INFO

If UBound(units) > 2 Or nbrClamps > 1 Then

clampCtr = clampCtr + 1

clampAppend = "c" & clampCtr & "_"

Else

clampAppend = ""

End If

clampStates = Array(clampAppend & "at_OPEN", clampAppend & "

at_CLOSE", clampAppend & "rmtp_CLOSE", _

clampAppend & "rmtp_OPEN")

clampSign = Array(cName & "_" & clampAppend & "at_OPEN", cName

& "_" & clampAppend & "at_CLOSE", _

cName & "_" & clampAppend & "rmtp_CLOSE", cName &

"_" & clampAppend & "rmtp_OPEN")

clampTags = Array(plcPrefix & unitGroup & "SG", plcPrefix &

unitGroup & "SG", plcPrefix & unitGroup & "YE1", _

plcPrefix & unitGroup & "YE2")

targetList.Range(pinNameColumn & xtrRows - 3 & ":" &

pinNameColumn & xtrRows).Value = _

Application.Transpose(clampStates) ’ set entry/exit name

targetList.Range(sigNameColumn & xtrRows - 3 & ":" &

sigNameColumn & xtrRows).Value = _

Application.Transpose(clampSign) ’ set signal name

targetList.Range(sigTypeColumn & xtrRows - 3 & ":" &

sigTypeColumn & xtrRows).Value = _

Application.Transpose(Array("I", "I", "Q", "Q")) ’ set I/O

targetList.Range(tagColumn & xtrRows - 3 & ":" & tagColumn &

xtrRows).Value = _

Application.Transpose(clampTags) ’ set plc tag

targetList.Range(extConColumn & xtrRows - 3 & ":" &

extConColumn & xtrRows).Value = "SIMBA" ’ set external

connection unit

VIII

B. Mapping Macro

Next h

’ if pin , create at_SET/RESET , rmtp_SET/RESET

ElseIf InStr(unitType , "PIN") <> 0 Then

pinNbr = Right(unitType , 2)

If IsNumeric(nbrClamps) Then

nbrPins = CInt(pinNbr)

Else

Err.Raise vbObjectError + 515, "ReadWorksheet", _

"Component name missing number , expected format TYPExx ,

such as CLAMP02. Issue with component in row " & CStr(

k)

compList.Parent.Close

xlApp.Quit

GoTo ErrHandler

End If

temp = unitGroup

For h = 1 To nbrPins

unitGroup = Left(temp , 3)

temp = Right(temp , Len(temp) - 3)

xtrRows = xtrRows + 4

targetList.Range(resourceColumn & xtrRows - 3 & ":" &

resourceColumn & xtrRows).Value = cName

’ see INFO

If UBound(units) > 2 Or nbrPins > 1 Then

pinCtr = pinCtr + 1

pinAppend = "pin" & pinCtr & "_"

Else

pinAppend = ""

End If

pinStates = Array(pinAppend & "at_RESET", pinAppend & "at_SET"

, pinAppend & "rmtp_SET", pinAppend & "rmtp_RESET")

pinSign = Array(cName & "_" & pinAppend & "at_RESET", cName &

"_" & pinAppend & "at_SET", _

cName & "_" & pinAppend & "rmtp_SET", cName & "_" &

pinAppend & "rmtp_RESET")

pinTags = Array(plcPrefix & unitGroup & "SG", plcPrefix &

unitGroup & "SG", plcPrefix & unitGroup & "YE1", _

plcPrefix & unitGroup & "YE2")

targetList.Range(pinNameColumn & xtrRows - 3 & ":" &

pinNameColumn & xtrRows).Value = _

Application.Transpose(pinStates) ’ set entry/exit name

targetList.Range(sigNameColumn & xtrRows - 3 & ":" &

sigNameColumn & xtrRows).Value = _

Application.Transpose(pinSign) ’ set signal name

targetList.Range(sigTypeColumn & xtrRows - 3 & ":" &

sigTypeColumn & xtrRows).Value = _

Application.Transpose(Array("I", "I", "Q", "Q")) ’ set I/O

targetList.Range(tagColumn & xtrRows - 3 & ":" & tagColumn &

xtrRows).Value = _

Application.Transpose(pinTags) ’ set plc tag

targetList.Range(extConColumn & xtrRows - 3 & ":" &

extConColumn & xtrRows).Value = "SIMBA" ’ set external

connection unit

Next h

’ if swing , create at_OPEN/CLOSE/RDY/SPEED/nSPEED

IX

B. Mapping Macro

ElseIf unitType = "SWING" Then

xtrRows = xtrRows + 8

swingStates = Array("at_OPEN", "at_CLOSE", "at_SPEED", "at_nSPEED"

, "at_RDY", "rmtp_CLOSE", "rmtp_OPEN", "SPEED")

swingSign = Array(cName & "_at_OPEN", cName & "_at_CLOSE", cName &

"_at_SPEED", cName & "_at_nSPEED", _

cName & "_at_RDY", cName & "_rmtp_CLOSE", cName & "

_rmtp_OPEN", cName & "_SPEED")

swingTags = Array(plcPrefix & unitGroup & "SG", plcPrefix &

unitGroup & "SG", plcPrefix & unitGroup & "SG", _

plcPrefix & unitGroup & "SG", plcPrefix & unitGroup & "

UE1_RDY", plcPrefix & unitGroup & "MUE1_L", _

plcPrefix & unitGroup & "MUE1_R", plcPrefix & unitGroup &

"MUE1_S")

swingPorts = Array("I", "I", "I", "I", "I", "Q", "Q", "Q")

targetList.Range(resourceColumn & xtrRows - 7 & ":" &

resourceColumn & xtrRows).Value = cName ’ set resource

targetList.Range(pinNameColumn & xtrRows - 7 & ":" & pinNameColumn

& xtrRows).Value = _

Application.Transpose(swingStates) ’ set entry/exit name

targetList.Range(sigNameColumn & xtrRows - 7 & ":" & sigNameColumn

& xtrRows).Value = _

Application.Transpose(swingSign) ’ set signal name

targetList.Range(sigTypeColumn & xtrRows - 7 & ":" & sigTypeColumn

& xtrRows).Value = _

Application.Transpose(swingPorts) ’ set I/O

targetList.Range(tagColumn & xtrRows - 7 & ":" & tagColumn &

xtrRows).Value = _

Application.Transpose(swingTags) ’ set plc tag

targetList.Range(extConColumn & xtrRows - 7 & ":" & extConColumn &

xtrRows).Value = "SIMBA" ’ set external connection unit

Else

Err.Raise vbObjectError + 516, "ReadWorksheet", _

"Could not recognize any component types. Types recognized by

this macro: CLAMP , PIN , SWING" _

& " (must be entirely upper case). Issue with component in row

 " & CStr(k)

compList.Parent.Close

xlApp.Quit

GoTo ErrHandler

End If

’ fixture type end

ElseIf component = "turntable" Then

If unitType = "TURNTABLE" Then

xtrRows = xtrRows + 23

turntabStates = Array("at_HOME", "rmtp_HOME", "at_LA", "at_LAEND",

"at_FORWARD", "at_BACKWARD", _

"at_OVERFORWARD", "at_OVERBACKWARD", "SYSERR", "

MOTORPROT", "mov_FORWARD", "mov_BACKWARD", _

"BIT1", "BIT2", "RLS_SET", "RLS_RESET", "at_POS1", "

at_POS2", "at_POS3", "ghost_to_OPEN", _

"ghost_to_CLOSE", "ghost_at_OPEN", "ghost_at_CLOSE")

For m = LBound(turntabStates) To UBound(turntabStates)

turntabSign(m) = cName & "_" & turntabStates(m)

Next m

turntabTags = Array(plcPrefix & unitGroup & "BG1_A3", plcPrefix &

unitGroup & "BG1_E3", _

plcPrefix & unitGroup & "BG1_A10", plcPrefix & unitGroup &

"BG1_A7", plcPrefix & unitGroup & "BG1_A8", _

X

B. Mapping Macro

plcPrefix & unitGroup & "BG1_A9", plcPrefix & unitGroup &

"BG1_A4", plcPrefix & unitGroup & "BG1_A5", _

plcPrefix & unitGroup & "BG1_A6", plcPrefix & unitGroup &

"QM1", plcPrefix & unitGroup & "BG1_E1", _

plcPrefix & unitGroup & "BG1_E2", plcPrefix & unitGroup &

"BG1_E5", plcPrefix & unitGroup & "BG1_E6", _

plcPrefix & unitGroup & "QC1", plcPrefix & unitGroup & "

QC2", plcPrefix & unitGroup & "SG1", _

plcPrefix & unitGroup & "SG2", plcPrefix & unitGroup & "

SG3", plcPrefix & "M13YE2", _

plcPrefix & "M13YE1", plcPrefix & "M13SG1", plcPrefix & "

M13SG2")

turntabPorts = Array("I", "Q", "I", "I", "I", "I", "I", "I", "I",

"I", "Q", "Q", "Q", "Q", "Q", "Q", "I", "I", _

"I", "Q", "Q", "I", "I")

targetList.Range(resourceColumn & xtrRows - 22 & ":" &

resourceColumn & xtrRows).Value = cName ’ set resource

targetList.Range(pinNameColumn & xtrRows - 22 & ":" &

pinNameColumn & xtrRows).Value = _

Application.Transpose(turntabStates) ’ set entry/exit name

targetList.Range(sigNameColumn & xtrRows - 22 & ":" &

sigNameColumn & xtrRows).Value = _

Application.Transpose(turntabSign) ’ set signal name

targetList.Range(sigTypeColumn & xtrRows - 22 & ":" &

sigTypeColumn & xtrRows).Value = _

Application.Transpose(turntabPorts) ’ set I/O

targetList.Range(tagColumn & xtrRows - 22 & ":" & tagColumn &

xtrRows).Value = _

Application.Transpose(turntabTags) ’ set plc tag

targetList.Range(extConColumn & xtrRows - 22 & ":" & extConColumn

& xtrRows).Value = "SIMBA" ’ set external connection unit

ElseIf InStr(unitType , "PIN") <> 0 Then

’ for now , i’m presuming that the "pins" are never grouped

xtrRows = xtrRows + 4

clampStates = Array("at_OPEN", "at_CLOSE", "rmtp_CLOSE", "

rmtp_OPEN")

clampSign = Array(cName & "_" & "at_OPEN", cName & "_" & "at_CLOSE

", _

cName & "_" & "rmtp_CLOSE", cName & "_" & "rmtp_OPEN")

clampTags = Array(plcPrefix & unitGroup & "SG", plcPrefix &

unitGroup & "SG", plcPrefix & unitGroup & "YE1", _

plcPrefix & unitGroup & "YE2")

targetList.Range(resourceColumn & xtrRows - 3 & ":" &

resourceColumn & xtrRows).Value = cName ’ set resource name

targetList.Range(pinNameColumn & xtrRows - 3 & ":" & pinNameColumn

& xtrRows).Value = _

Application.Transpose(clampStates) ’ set entry/exit name

targetList.Range(sigNameColumn & xtrRows - 3 & ":" & sigNameColumn

& xtrRows).Value = _

Application.Transpose(clampSign) ’ set signal name

targetList.Range(sigTypeColumn & xtrRows - 3 & ":" & sigTypeColumn

& xtrRows).Value = _

Application.Transpose(Array("I", "I", "Q", "Q")) ’ set I/O

targetList.Range(tagColumn & xtrRows - 3 & ":" & tagColumn &

xtrRows).Value = _

Application.Transpose(clampTags) ’ set plc tag

XI

B. Mapping Macro

targetList.Range(extConColumn & xtrRows - 3 & ":" & extConColumn &

xtrRows).Value = "SIMBA" ’ set external connection unit

ElseIf InStr(unitType , "CLAMP") <> 0 Then

’ with only two turntable samples , I’m very uncertain regarding

what forms they ’ll appear in. for now i’ll assume

’ that the clamps will either all be in one place , or divided with

reasonable limits , and that the group numbers

’ will always range from M14 to M19 , and the clamps will always be

grouped in pairs

clampNbr = Right(unitType , 2)

If IsNumeric(nbrClamps) Then

nbrClamps = CInt(clampNbr)

Else

Err.Raise vbObjectError + 515, "ReadWorksheet", _

"Component name missing number , expected format TYPExx ,

such as CLAMP02. Issue with component in row " & CStr(

k)

compList.Parent.Close

xlApp.Quit

GoTo ErrHandler

End If

If nbrClamps = 12 Then

unitGroup = "M14M14M15M15M16M16M17M17M18M18M19M19"

End If

temp = unitGroup

For h = 1 To nbrClamps

unitGroup = Left(temp , 3)

temp = Right(temp , Len(temp) - 3)

xtrRows = xtrRows + 4

targetList.Range(resourceColumn & xtrRows - 3 & ":" &

resourceColumn & xtrRows).Value = cName

clampCtr = clampCtr + 1

clampAppend = "c" & clampCtr & "_"

clampStates = Array(clampAppend & "at_OPEN", clampAppend & "

at_CLOSE", clampAppend & "rmtp_CLOSE", _

clampAppend & "rmtp_OPEN")

clampSign = Array(cName & "_" & clampAppend & "at_OPEN", cName

& "_" & clampAppend & "at_CLOSE", _

cName & "_" & clampAppend & "rmtp_CLOSE", cName &

"_" & clampAppend & "rmtp_OPEN")

clampTags = Array(plcPrefix & unitGroup & "SG", plcPrefix &

unitGroup & "SG", plcPrefix & unitGroup & "YE1", _

plcPrefix & unitGroup & "YE2")

targetList.Range(pinNameColumn & xtrRows - 3 & ":" &

pinNameColumn & xtrRows).Value = _

Application.Transpose(clampStates) ’ set entry/exit name

targetList.Range(sigNameColumn & xtrRows - 3 & ":" &

sigNameColumn & xtrRows).Value = _

Application.Transpose(clampSign) ’ set signal name

targetList.Range(sigTypeColumn & xtrRows - 3 & ":" &

sigTypeColumn & xtrRows).Value = _

Application.Transpose(Array("I", "I", "Q", "Q")) ’ set I/O

targetList.Range(tagColumn & xtrRows - 3 & ":" & tagColumn &

xtrRows).Value = _

Application.Transpose(clampTags) ’ set plc tag

targetList.Range(extConColumn & xtrRows - 3 & ":" &

XII

B. Mapping Macro

extConColumn & xtrRows).Value = "SIMBA" ’ set external

connection unit

Next h

Else

Err.Raise vbObjectError + 517, "ReadWorksheet", _

"Could not recognize any component types. Types recognized by

this macro: CLAMP , PIN , TURNTABLE" _

& " (must be entirely upper case). Issue with component in row

 " & CStr(k)

compList.Parent.Close

xlApp.Quit

GoTo ErrHandler

End If

’ turntable type end

End If

Next N

Next k

Dim indx As Integer

Dim noxt As Range

Dim thisCell As String

’ all signals ending with G need to be appended with a number. the number is based

on how many signals with the same

’ prefix and group number there are

iLastRow = targetList.Cells(Rows.Count , "a").End(xlUp).Row ’ make sure this sets

iLastRow for wot sheet

For k = 2 To iLastRow

’ for some reason , the "while not noxt is nothing" check does not work , and

instead of looking up why , i’ve implemented

’ a workaround by starting the counter at 2 and setting number 1 manually. if

you can get a "noxt is nothing/empty/null"

’ check to work , counter can be set to 1, the initial search should start at 1

(currently starts at k = 2), the hard "set

’ to 1" assignment can be removed , and the firstAddress assignment should be

moved to appear in the "if not noxt is..."

’ check

ctr = 2

thisCell = targetList.Cells(k, "G").Value

firstAddress = targetList.Range("G" & k).Address

’ if this cell ends with G

If Right(thisCell , 1) = "G" Then

’ this returns the second occurrence of the signal. by starting at index

G1, the first occurrence can be found.

Set noxt = targetList.Range("G" & k & ":G" & iLastRow).Find(thisCell , _

LookIn :=xlValues , _

LookAt :=xlWhole , _

SearchOrder :=xlByRows , _

SearchDirection := xlNext)

’, _ after:=noxt)

’ find all signals with identical name , append name with a digit

If Not noxt Is Nothing Then

’firstAddress = noxt.Address

Do

targetList.Cells(noxt.Row , noxt.Column).Value = targetList.Cells(

noxt.Row , noxt.Column).Value & ctr

Set noxt = targetList.Range("G2:G" & iLastRow).Find(thisCell , _

LookIn :=xlValues , _

LookAt :=xlWhole , _

XIII

B. Mapping Macro

SearchOrder :=xlByRows , _

SearchDirection :=xlNext , _

after:=noxt)

ctr = ctr + 1

Loop While Not noxt Is Nothing And firstAddress <> noxt.Address

’ set the first occurrence to 1

targetList.Cells(k, "G").Value = targetList.Cells(k, "G").Value & "1"

End If

End If

Next k

compList.Parent.Close

xlApp.Quit

Exit Sub

’ error management

ErrHandler:

’Select Case Err.Number

’Case 9

’MsgBox Err.Source & ": The following error occured: " & Err.Description

’Case ERROR_INVALID_DATA

MsgBox "The following error occured: " & Err.Description

’End Select

End Sub

Private Sub CommandButton2_Click ()

’ SET PLC ADDRESS

’ TODO: cleaning

’ TODO: error management

’ TODO: bunch of trials

’ LOTS OF THINGS HERE FROM TROUBLESHOOTING , THEY ’RE KEPT FOR NOW FOR FURTHER

TROUBLESHOOTING , BUT CLEANUP IN THE FUTURE

Dim thisCell As String

Dim ctr As Integer

Dim noxt As Range

Dim wut As Range

Dim plcTags As String

Dim plcRow As Integer

Dim plcList As Worksheet

Dim targetList As Worksheet

Dim missingPLCList As Worksheet

Dim plcPath As String

Dim matchedTag As Range

Dim matchedAddr As Integer

Dim addrColumn As String

Dim srcColumn As String

Dim tagColumn As String

Dim plcAddrColumn As String

Dim srcSheet As String

Dim addr As String

Dim iLastRow2 As Integer

Dim iLastRow As Integer

Dim countr As Integer

’ prompt the user to select the component list file

With Application.FileDialog(msoFileDialogOpen)

.Title = "Select the PLC Tags list"

.AllowMultiSelect = False

.Show

If .SelectedItems.Count = 1 Then

plcPath = .SelectedItems (1)

XIV

B. Mapping Macro

End If

End With

’ potentially introduce a prompt that asks the user to enter or select the

corresponding sheets/columns

srcSheet = "PLC Tags"

srcColumn = Application.InputBox(prompt :="Enter the column in which the components

 are found (A by default). Cancel to select default.", Type :=1 + 2)

If srcColumn = vbNullString Or srcColumn = "False" Then

srcColumn = "A" ’ component source column

End If

addrColumn = "F"

plcAddrColumn = "D"

tagColumn = "G" ’ desired plc tag column destination

’ define target location

Set targetList = ActiveWorkbook.Worksheets (1)

targetList.Name = "Matched tags"

’ if the list is sufficiently large , there are other more appropriate methods

’ for now this is used:

’ create new instance of excel , and make it invisible

Set xlApp = New Excel.Application

xlApp.Visible = False

’ open your workbook in this new instance

Set plcList = xlApp.Workbooks.Open(plcPath , ReadOnly :=True).Worksheets (1)

’ find a match for the signal and plc tag list

iLastRow = targetList.Cells(Rows.Count , tagColumn).End(xlUp).Row ’ make sure this

sets iLastRow for wot sheet

iLastRow2 = plcList.Cells(Rows.Count , srcColumn).End(xlUp).Row ’ make sure this

sets iLastRow for wot sheet

targetList.Range("F2:F" & iLastRow).NumberFormat = "@"

For k = 2 To iLastRow

thisCell = targetList.Cells(k, tagColumn).Value

If thisCell <> "" Then

On Error Resume Next

matchedTag = plcList.Range(srcColumn & "2:" & srcColumn & iLastRow2).Find(

thisCell)

matchedAddr = plcList.Range(srcColumn & "2:" & srcColumn & iLastRow2).Find

(thisCell).Row

If matchedAddr = 0 Then

addr = "WWNO MATCH"

Else

matchedAddr = matchedTag.Row

addr = plcList.Cells(matchedAddr , plcAddrColumn).Value

End If

targetList.Cells(k, addrColumn).Value = Right(addr , Len(addr) - 2)

matchedAddr = 0

End If

Next k

Set missingPLCList = ActiveWorkbook.Worksheets.Add

missingPLCList.Name = "Missing tags"

countr = 2

missingPLCList.Cells(1, "A").Value = "PLC tag"

missingPLCList.Cells(1, "B").Value = "Type"

missingPLCList.Cells(1, "C").Value = "Address"

missingPLCList.Cells(1, "D").Value = "Comment"

’’ generate a list with unmatched PLC tags

’’ take note of their safety tag

For k = 2 To iLastRow2

thisCell = plcList.Cells(k, srcColumn).Value

XV

B. Mapping Macro

If thisCell <> "" Then

On Error Resume Next

matchedTag = targetList.Range("G2:G" & iLastRow).Find(thisCell)

matchedAddr = targetList.Range("G2:G" & iLastRow).Find(thisCell).Row

If matchedAddr = 0 Then

missingPLCList.Cells(countr , "A").Value = thisCell

missingPLCList.Cells(countr , "B").Value = plcList.Cells(k, "B").Value

missingPLCList.Cells(countr , "C").Value = plcList.Cells(k, "D").Value

missingPLCList.Cells(countr , "D").Value = plcList.Cells(k, "E").Value

countr = countr + 1

End If

matchedAddr = 0

End If

Next k

plcList.Parent.Close

xlApp.Quit

End Sub

XVI

	Introduction
	Background
	Virtual Commissioning
	Report structure

	Problem
	Objectives and purpose
	Constraints
	Process Simulate
	SIMBA

	Research questions

	Approach
	Literature review: methods
	Literature review: potential
	Case study: editing existing robot cell

	Virtual model
	Modeling
	Simplified model

	Station setup
	Connection to SIMBA
	TIA portal
	Process Simulate
	Signal mapping

	Potential issues

	Case study: robot cell
	Resources
	Resource names

	Operations
	Sensors

	Automatic signal mapping
	Requirements
	Proposed structure

	Verifying setup and mapping
	Trial run on PLC
	External safety I/O
	HMI
	Conclusion tests

	Results
	Model specifications for virtual commissioning
	Suggestions for faster simulations
	Energy consumption
	Summary answers to research questions
	Practical
	Exploration

	Discussion and conclusion
	Sustainability and ethical aspects
	Further work

	 References
	Step-by-step guide
	SIMBA box
	Simulation unit
	TIA Portal
	Process Simulate

	Mapping Macro

